Estimating the linear regression model with categorical covariates subject to randomized response
نویسندگان
چکیده
The maximum likelihood estimation of the iid normal linear regression model where some of the covariates are subject to randomized response is discussed. Randomized response (RR) is an interview technique that can be used when sensitive questions have to be asked and respondents are reluctant to answer directly. RR variables are described as misclassified categorical variables where conditional misclassification probabilities are known. The likelihood of the linear regression model with RR covariates is derived and a fast and straightforward EM algorithm is developed to obtain maximum likelihood estimates. The basis of the algorithm consists of elementary weighted least-squares steps. A simulation example demonstrates the feasibility of the method. © 2005 Elsevier B.V. All rights reserved.
منابع مشابه
Maximum Likelihood Estimation of Parameters in Generalized Functional Linear Model
Sometimes, in practice, data are a function of another variable, which is called functional data. If the scalar response variable is categorical or discrete, and the covariates are functional, then a generalized functional linear model is used to analyze this type of data. In this paper, a truncated generalized functional linear model is studied and a maximum likelihood approach is used to esti...
متن کاملBuilding Cox-Type Structured Hazard Regression Models with Time-Varying Effects
In recent years, flexible hazard regression models based on penalised splines have been developed that allow us to extend the classical Cox-model via the inclusion of time-varying and nonparametric effects. Despite their immediate appeal in terms of flexibility, these models introduce additional difficulties when a subset of covariates and the corresponding modelling alternatives have to be cho...
متن کاملPositive-Shrinkage and Pretest Estimation in Multiple Regression: A Monte Carlo Study with Applications
Consider a problem of predicting a response variable using a set of covariates in a linear regression model. If it is a priori known or suspected that a subset of the covariates do not significantly contribute to the overall fit of the model, a restricted model that excludes these covariates, may be sufficient. If, on the other hand, the subset provides useful information, shrinkage meth...
متن کاملA WEIGHTED LINEAR REGRESSION MODEL FOR IMPERCISE RESPONSE
A weighted linear regression model with impercise response and p-real explanatory variables is analyzed. The LR fuzzy random variable is introduced and a metric is suggested for coping with this kind of variables. A least square solution for estimating the parameters of the model is derived. The result are illustrated by the means of some case studies.
متن کاملحل معادلات برآوردکننده مدلهای رگرسیون با اندازه خطای تصادفی روی متغیر مستقل به روش بهینه سازی
Measurements of some variables in statistical analysis are often encountered with random errors. Therefore, investigating of the effects of these errors seems to be important. This event in regression analysis seems to be more necessary. Because the aim of the fitting a regression model is estimating the effect of an independent variable on a response variable. Then measurements of an independe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 50 شماره
صفحات -
تاریخ انتشار 2006